?!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 亚洲,国产,日韩,综合一区 ,吸咬奶头狂揉60分钟视频

亚洲精品92内射,午夜福利院在线观看免费 ,亚洲av中文无码乱人伦在线视色,亚洲国产欧美国产综合在线,亚洲国产精品综合久久2007

?div class="header_top">
Java知识分n|?- L学习(fn)从此开始!    
SpringBoot+SpringSecurity+Vue+ElementPlus权限pȝ实战评 震撼发布        

最新Java全栈׃实战评(免费)

springcloud分布式电(sh)商秒杀实战评

IDEA怹Ȁz?/h2>

66套java实战评无套路领?/h2>

锋哥开始收Java学员啦!

Python学习(fn)路线?/h2>

锋哥开始收Java学员啦!
当前位置: 主页 > Java文 > Python技?/a> >

Python机器学习(fn) W??(影印? PDF 下蝲


旉:2024-05-18 09:14来源:http://www.sh6999.cn 作?转蝲  侉|举报
Python机器学习(fn) W??(影印?
失效链接处理
Python机器学习(fn) W??(影印? PDF 下蝲 

转蝲自:(x)
http://www.python222.com/article/942

用户下蝲说明Q?/strong>

?sh)子版仅供预览,下蝲?4时内务必删除,支持正版Q喜Ƣ的误买正版书c:(x)
https://product.dangdang.com/11193811525.html
 

相关截图Q?br />


资料介:(x)
机器学习(fn)正在蚕食软g世界。在q本Sebastian Raschka的畅销书《Python机器学习(fn)Q第二版Q》中Q你了解ƈ学习(fn)到机器学?fn)、神l网l和深度学习(fn)?前沿知识?塞巴斯蒂?middot;拉施卡、瓦希d·麦加利利著的《Python机器学习(fn)?新ƈ扩展了包括scikit-learn、Keras、TensorFlow在内?开源技术。书中提供了使用Python创徏有效的机器学?fn)和深度学?fn)应用所需的实用知识和技术?在涉?qing)数据分析?主题之前QSebastian Raschka和Vahid Mirjalili以其独特见解和专业知识ؓ(f)你介l机器学?fn)和深度学?fn)法。本书将机器学习(fn)的理论原理与实际~码Ҏ(gu)相结合,以求全面掌握机器学习(fn)理论?qing)其Python实现?/span>


资料目录Q?br /> Chapter 1: Giving Computers the Ability_ to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predictions about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving interactive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
Introduction to the basic terminology and notations
A roadmap for building machine learning systems
Preprocessing - getting data into shape
Training and selecting a predictive model
Evaluating models and predicting unseen data instances
Using Python for machine learning
Installing Python and packages from the Python Package Index
Using the Anaconda Python distribution and package manager
Packages for scientific computing, data science, and machine learning
Summary
Chapter 2: Training Simple Machine Learning Algorithms
for Classification
Artificial neurons - a brief glimpse into the early history of
machine learning
The formal definition of an artificial neuron
The perceptron learning rule
Implementing a perceptron learning algorithm in Python
An object-oriented perceptron API
Training a perceptron model on the Iris dataset
Adaptive linear neurons and the convergence of learning
Minimizing cost functions with gradient descent
Implementing Adaline in Python
Improving gradient descent through feature scaling
Large-scale machine learning and stochastic gradient descent
Summary
Chapter 3: A Tour of Machine Learning Classifiers
Using scikit-learn
Choosing a classification algorithm
First steps with scikit-learn - training a perceptron
Modeling class probabilities via logistic regression
Logistic regression intuition and conditional probabilities
Learning the weights of the logistic cost function
Converting an Adaline implementation into an algorithm for
logistic regression
Training a logistic regression model with scikit-learn
Tackling overfitting via regularization
Maximum margin classification with support vector machines
Maximum margin intuition
Dealing with a nonlinearly separable case using slack variables

 

------分隔U?---------------------------
?!-- //底部模板 -->