锘?!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 亚洲,国产,日韩,综合一区 ,吸咬奶头狂揉60分钟视频

亚洲精品92内射,午夜福利院在线观看免费 ,亚洲av中文无码乱人伦在线视色,亚洲国产欧美国产综合在线,亚洲国产精品综合久久2007

锘?div class="header_top">
Java鐭ヨ瘑鍒嗕韓緗?- 杞繪澗瀛︿範(fàn)浠庢寮€濮嬶紒聽聽聽聽
SpringBoot+SpringSecurity+Vue+ElementPlus鏉冮檺緋葷粺瀹炴垬璇劇▼ 闇囨捈鍙戝竷        

鏈€鏂癑ava鍏ㄦ爤灝變笟瀹炴垬璇劇▼(鍏嶈垂)

springcloud鍒嗗竷寮忕數(shù)鍟嗙鏉€瀹炴垬璇劇▼

IDEA姘鎬箙嬋€媧?/h2>

66濂梛ava瀹炴垬璇劇▼鏃犲璺鍙?/h2>

閿嬪摜寮€濮嬫敹Java瀛﹀憳鍟︼紒

Python瀛︿範(fàn)璺嚎鍥?/h2>

閿嬪摜寮€濮嬫敹Java瀛﹀憳鍟︼紒

Python鏈哄櫒瀛︿範(fàn) 絎?鐗?(褰卞嵃鐗? PDF 涓嬭澆


鏃墮棿:2024-05-18 09:14鏉ユ簮:http://www.sh6999.cn 浣滆€?杞澆聽聽渚墊潈涓炬姤
Python鏈哄櫒瀛︿範(fàn) 絎?鐗?(褰卞嵃鐗?
澶辨晥閾炬帴澶勭悊
Python鏈哄櫒瀛︿範(fàn) 絎?鐗?(褰卞嵃鐗? PDF 涓嬭澆 

杞澆鑷細(xì)
http://www.python222.com/article/942

鐢ㄦ埛涓嬭澆璇存槑錛?/strong>

鐢?shù)瀛愮増浠呬緵棰勮锛屼笅铦插?4灝忔椂鍐呭姟蹇呭垹闄わ紝鏀寔姝g増錛屽枩嬈㈢殑璇瘋喘涔版鐗堜功綾嶏細(xì)
https://product.dangdang.com/11193811525.html
 

鐩稿叧鎴浘錛?br />


璧勬枡綆€浠嬶細(xì)
鏈哄櫒瀛︿範(fàn)姝e湪铓曢杞歡涓栫晫銆傚湪榪欐湰Sebastian Raschka鐨勭晠閿€涔︺€奝ython鏈哄櫒瀛︿範(fàn)錛堢浜岀増錛夈€嬩腑錛屼綘灝嗕簡瑙e茍瀛︿範(fàn)鍒版満鍣ㄥ涔?fàn)銆佺緇忕綉緇滃拰娣卞害瀛︿範(fàn)鐨?鍓嶆部鐭ヨ瘑銆?濉炲反鏂拏瀹?middot;鎷夋柦鍗°€佺摝甯屽痙·楹﹀姞鍒╁埄钁楃殑銆奝ython鏈哄櫒瀛︿範(fàn)銆?鏂板茍鎵╁睍浜嗗寘鎷瑂cikit-learn銆並eras銆乀ensorFlow鍦ㄥ唴鐨?寮€婧愭妧鏈€備功涓彁渚涗簡浣跨敤Python鍒涘緩鏈夋晥鐨勬満鍣ㄥ涔?fàn)鍜屾繁搴﹀涔?fàn)搴旂敤鎵€闇€鐨勫疄鐢ㄧ煡璇嗗拰鎶€鏈€?鍦ㄦ秹鍙?qiáng)鏁版嵁鍒嗘瀽鐨?涓婚涔嬪墠錛孲ebastian Raschka鍜孷ahid Mirjalili浠ュ叾鐙壒瑙佽В鍜屼笓涓氱煡璇嗕負(fù)浣犱粙緇嶆満鍣ㄥ涔?fàn)鍜屾繁搴﹀涔?fàn)綆楁硶銆傛湰涔﹀皢鏈哄櫒瀛︿範(fàn)鐨勭悊璁哄師鐞嗕笌瀹為檯緙栫爜鏂規(guī)硶鐩哥粨鍚堬紝浠ユ眰鍏ㄩ潰鎺屾彙鏈哄櫒瀛︿範(fàn)鐞嗚鍙?qiáng)鍏禤ython瀹炵幇銆?/span>


璧勬枡鐩綍錛?br /> Chapter 1: Giving Computers the Ability_ to Learn from Data
Building intelligent machines to transform data into knowledge
The three different types of machine learning
Making predictions about the future with supervised learning
Classification for predicting class labels
Regression for predicting continuous outcomes
Solving interactive problems with reinforcement learning
Discovering hidden structures with unsupervised learning
Finding subgroups with clustering
Dimensionality reduction for data compression
Introduction to the basic terminology and notations
A roadmap for building machine learning systems
Preprocessing - getting data into shape
Training and selecting a predictive model
Evaluating models and predicting unseen data instances
Using Python for machine learning
Installing Python and packages from the Python Package Index
Using the Anaconda Python distribution and package manager
Packages for scientific computing, data science, and machine learning
Summary
Chapter 2: Training Simple Machine Learning Algorithms
for Classification
Artificial neurons - a brief glimpse into the early history of
machine learning
The formal definition of an artificial neuron
The perceptron learning rule
Implementing a perceptron learning algorithm in Python
An object-oriented perceptron API
Training a perceptron model on the Iris dataset
Adaptive linear neurons and the convergence of learning
Minimizing cost functions with gradient descent
Implementing Adaline in Python
Improving gradient descent through feature scaling
Large-scale machine learning and stochastic gradient descent
Summary
Chapter 3: A Tour of Machine Learning Classifiers
Using scikit-learn
Choosing a classification algorithm
First steps with scikit-learn - training a perceptron
Modeling class probabilities via logistic regression
Logistic regression intuition and conditional probabilities
Learning the weights of the logistic cost function
Converting an Adaline implementation into an algorithm for
logistic regression
Training a logistic regression model with scikit-learn
Tackling overfitting via regularization
Maximum margin classification with support vector machines
Maximum margin intuition
Dealing with a nonlinearly separable case using slack variables

 

------鍒嗛殧綰?---------------------------
锘?!-- //搴曢儴妯℃澘 -->